Rethinking Physics for Biologists: Adapting to a major new service course constituency

Tuesday, September 25, 2012 - 3:15pm - 4:15pm
Regents 109
Joe (E. F.) Redish
Department of Physics, University of Maryland

Though many physics departments offer a variety of introductory physics classes, most of the larger departments offer (and support themselves on) two main year-long service courses – a calculus-based one an algebra-based introductory one. At universities with engineering schools, the calculus-based course is primarily designed to serve the needs of engineers. Traditionally, the algebra-based course serves a variety of populations: pre-meds, nurses, architects, kinesiologists, and students looking for a lab course to satisfy a distribution requirement. Looking at the texts for the algebra-based class it’s pretty clear that this is a “cut down” version of the calculus-based class – as if it were designed to serve potential engineers with limited skills in mathematics. But over the past decade, a growing fraction of this class are students who are not weak engineering students, but strong biology students. Furthermore, the biology community has been increasingly calling for stronger, more appropriate, and more interdisciplinary science classes for biologists and pre-health care professionals. Physicists around the country have begun collaborating with biologists to create an “Introductory Physics for Life Sciences” (IPLS) class. In this talk I will describe one such effort at the University of Maryland. As part of the “National Experiment in Undergraduate Science Education” (NEXUS) a large team of physicists biologists, and chemists working with our Physics and Biology Education Research Groups (PERG & BERG) have been rethinking and redesigning introductory physics for biology majors. I will present some of our observations, difficulties, ideas, and present preliminary results from the first trial year of this class.


E. F. Redish and D. Hammer, “Reinventing College Physics for Biologists: Explicating an Epistemological Curriculum,” Am. J. Phys., 77, 629-642 (2009).

“Collaboration seeks to create interdisciplinary undergraduate curriculum”,


Host: Amy Liu